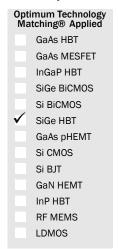
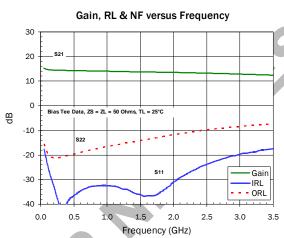


50 MHz to 3500 MHz SILICON GERMANIUM ACTIVE BIAS GAIN BLOCK


Package: SOT-89



Product Description

RFMD's SGC-6289Z is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SGC-6289Z does not require a dropping resistor as compared to traditional Darlington amplifiers. The SGC-6289Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to $50\,\Omega$.

Features

- Single Supply Operation: 5V at I_D=83 mA
- No Dropping Resistor Required
- Patented Self Bias Circuitry
- Gain=13.5dBm at 1950MHz
- $P_{1dB} = 19.2 dBm at 1950 MHz$
- IP₃=33.5dBm at 1950MHz
- Robust 1000V ESD, Class 1C HBM

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- Wireless Data, Satellite

Parameter	Specification			Unit	Condition	
Farameter	Min.	Тур.	Max.	Unit	Condition	
Small Signal Gain		14.0		dB	500MHz	
	12.5	14.0	15.5	dB	850MHz*	
	12.0	13.5	15.0	dB	1950MHz	
Output Power at 1dB Compression		19.0		dBm	500MHz	
		19.5		dBm	850MHz	
	17.7	19.2		dBm	1950MHz	
Output Third Order Intercept Point		34.5		dBm	500MHz	
		34.5		dBm	850MHz	
	31.5	33.5		dBm	1950MHz	
Input Return Loss	14.0	18.5		dB	1950MHz	
Output Return Loss	20.0	25.5		dB	1950MHz	
Noise Figure		3.3		dB	1930MHz	
Device Operating Voltage		5		V		
Device Operating Current	70	83	96	mA		
Thermal Resistance		65		°C/W	junction to lead	

Test Conditions: V_D=5.0V, I_D=83mA, T_L=25 °C, OIP₃ Tone Spacing=1MHz, *Bias Tee Data, Z_S=Z_L=50Ω, P_{OUT} per tone=0dBm, Application Circuit Data Unless Otherwise Noted

Absolute Maximum Ratings

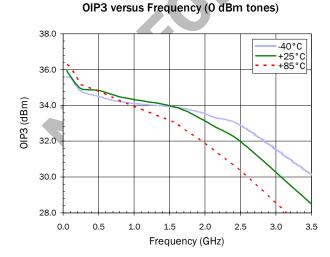
_		
Parameter	Rating	Unit
Max Device Current (I _D)	100	mA
Max Device Voltage (V _D)	7	V
Max RF Input Power* (See Note)	+24	dBm
Max Junction Temperature (T _J)	+150	°C
Operating Temperature Range (T _L)	-40 to +85	°C
Max Storage Temperature	+150	°C
ESD Rating - Human Body Model (HBM)	Class 1C	
Moisture Sensitivity Level	MSL 2	

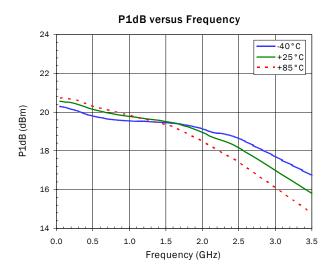
^{*}Note: Load condition Z_{L1} =50 Ω

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).


The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

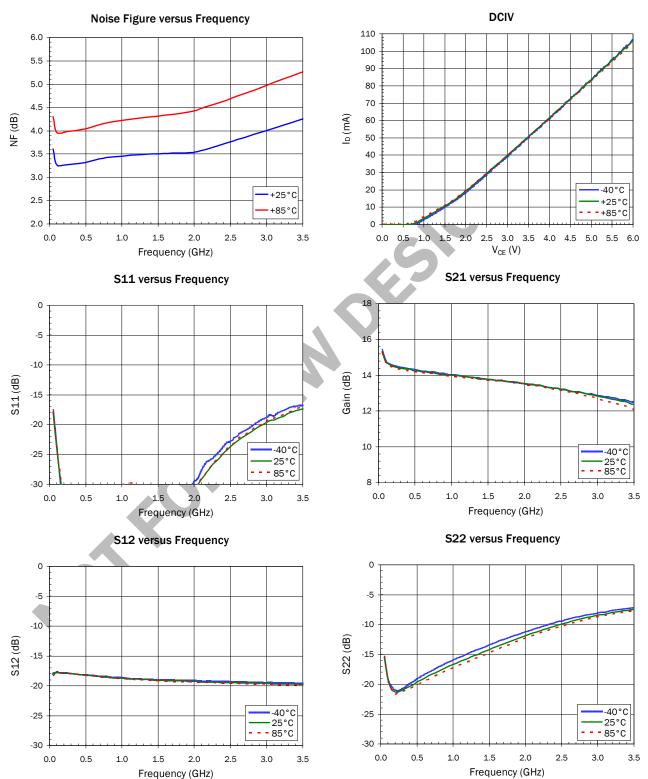

Typical RF Performance at Key Operating Frequencies (Application Circuit data unless otherwise noted)

Parameter	Unit	100	500	850	1950	2500	3500
		MHz*	MHz	MHz	MHz	MHz	MHz*
Small Signal Gain (G)	dB	15.0	14.0	14.0	13.5	13.2	12.5
Output Third Order Intercept Point (OIP ₃)	dBm	35.5	34.5	34.5	33.5	31.5	28.5
Output Power at 1dB Compression (P _{1dB})	dBm	20.5	19.9	19.5	19.2	17.8	15.8
Input Return Loss (IRL)	dB	23.5	41.0	22.0	18.5	19.0	18.5
Output Return Loss (ORL)	dB	18.5	21.0	19.5	25.5	12.5	8.0
Reverse Isolation (S ₁₂)	dB	18.0	18.5	18.5	19.5	19.5	19.9
Noise Figure (NF)	dB	3.3	3.2	3.4	3.3	3.5	4.3

Test Conditions: $V_D = 5V I_D = 83 \text{mA}$ OIP₃ Tone Spacing = 1MHz, P_{OUT} per tone = 0dBm $T_L = 25 \,^{\circ}\text{C}$ $Z_S = Z_L = 50 \,\Omega$, *Bias Tee Data

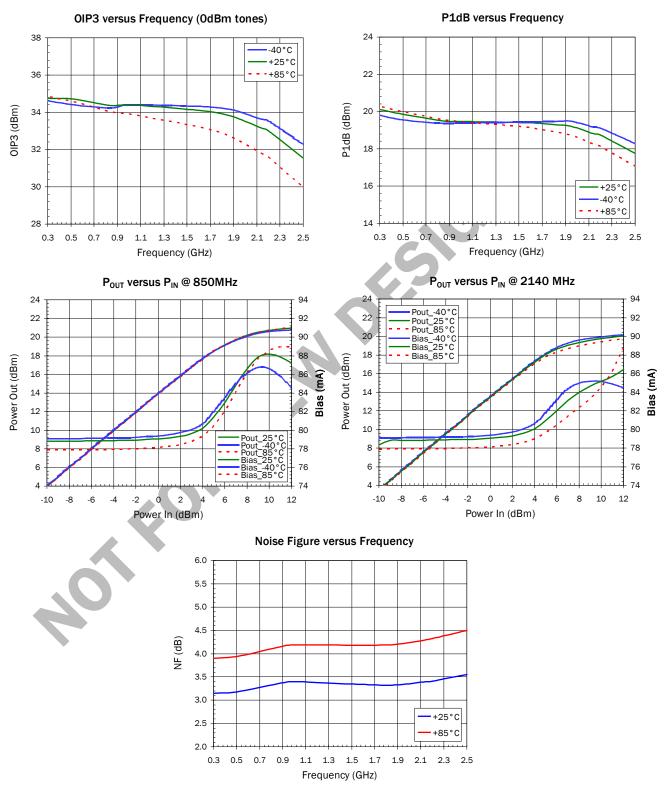
Typical Performance with Bias Tees, $V_D = 5V$, $I_D = 83 \text{ mA}$

^{*}Note: Z_{L2}=10:1 VSWR

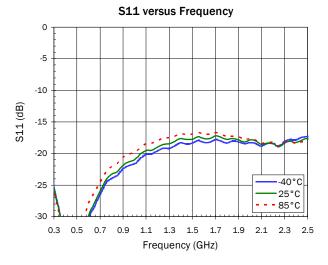

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

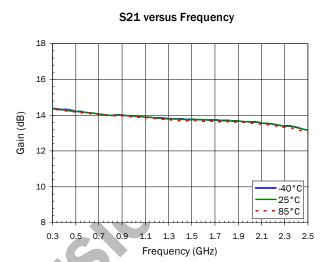
Bias Conditions should also satisfy the following expression:

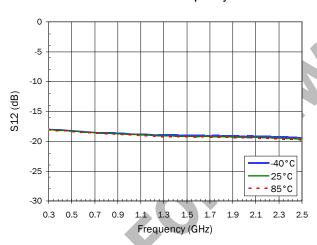
IDVD < (TJ-TL)/RTH, j-I and TL=TLEAD



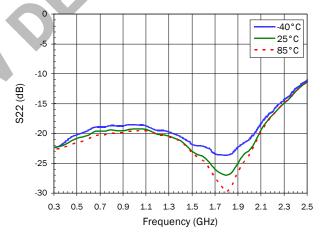
Typical Performance with Bias Tees, $V_D = 5V$, $I_D = 83 \text{ mA}$

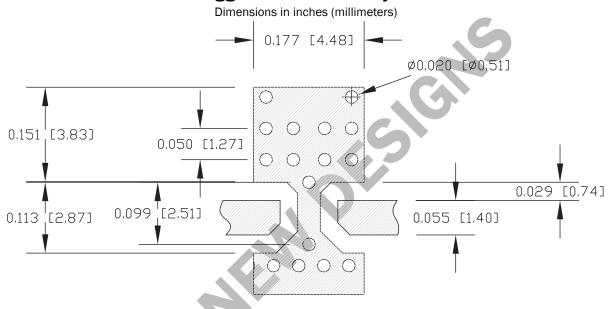


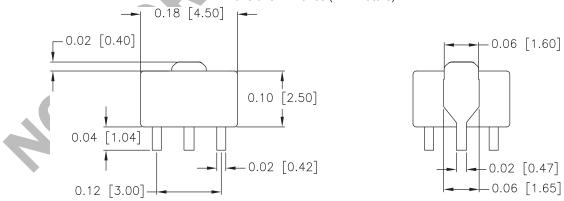

Typical Performance with Application Circuit, V_D=5V, I_D=83mA

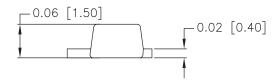


Typical Performance with Application Circuit, $V_D = 5V$, $I_D = 83 \text{ mA}$

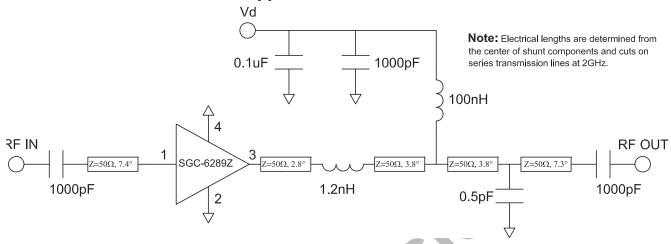


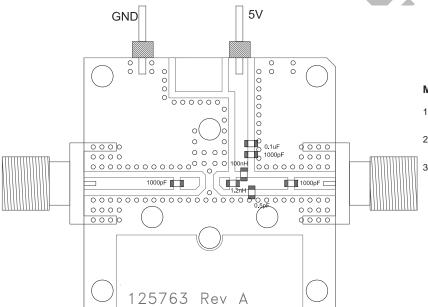

S22 versus Frequency


Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground inductance and achieve optimum RF performance.
3	RF OUT/ DC BIAS	RF output and bias pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.


Suggested PCB Pad Layout

Package Drawing


Dimensions in inches (millimeters)



Application Schematic

Evaluation Board

SGC-6289Z 200-2500 MHz

Mounting Instructions

- 1. Solder the copper pad on the backside of the device package to the ground plane.
- 2. Use a large ground pad area with many plated through-holes as shown.
- We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

Part Identification

Part will be identified with "SGC6289Z" Trace Code. Alternate marking is "C62Z".

Ordering Information

Part Number	Description	Reel Size	Devices/Reel
SGC-6289Z	Lead Free, RoHS Compliant	13"	3000
SGC-6289Z-EVB1	200 MHz to 2500 MHz Eval Board	N/A	N/A